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ABSTRACT

Fractal geometry can simulate natural topography,

creating data that can be used in sonar models as realistic

ocean bottom features. An algorithm using recursive

subdivision, or midpoint replacement, is used to create the

fractals. The appearance, statistics, and dimension of the

fractal can be controlled through the use of variables. The

variables control the initial corner values and the amount

that each subdivision can vary from the average of its two

initial points. The choice of a random number distribution

also affects the final fractal. The statistics, fractal

dimension, and appearance of data generated by the fractal

algorithm are comparable to real data.
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I. INTRODUCTION

Knowledge of the shape and texture of the ocean bottom

is of interest to the sonar community. The form that the

bottom takes, both in fine and gross features, affects the

image resulting from sonar ensonification. Current sonar

models assume a homogeneous flat planar surface or random

facet distribution for the ocean bottom. Although this is

efficient for computations it is misleading. The final

result may correctly model the behavior of a sonar on the

target but it will not include the effects, reflection,

reverberation, and shadowing, from a topographically correct

bottom.

Although the use of real data is optimum it is

expensive, difficult, and time consuming to collect. The

solution is the simulation of data that behaves similarly to

real data. Fractal geometry allows the simulation of the

ocean floor. It can create data that has texture that is

expected in natural terrain. Natural surfaces and features

have been simulated, at least to the satisfaction of the

human eye, using fractal geometry.

In recent years fractals have been used to simulate

topography, most notably in movies such as "The Last

Starfighter" and "Star Trek - The Wrath of Khan". (Pietgen,

Saupe, 1988, p.2) The images created with fractals blend



into the movie effect and discrimination between real

topography and computer generated topography becomes

difficult.

The objective of this thesis is to present a method for

simulating a selection of ocean bottoms in terms of bottom

types. The simulation will be validated by comparison with

real data to establish the merit of using the proposed

fractal generation method. The algorithm can be

incorporated into sonar models to provide a more realistic

background representation. The advantage of this approach

is the saving in space that results when fractals are

generated as needed and not stored.

By using stored parameters any fractal that can be

created by this algorithm can be recreated at any time with

no loss of information. The disadvantage is the amount of

time that is required to recreate the fractal. The time

required to create a fractal surface is dependent upon the

computer but presently available computers make this

algorithm a reasonable addition to other models adding only

seconds of run time.

A. FRACTAL GEOMETRY

There are certain shapes that contain infinite levels of

detail. These fractals can fill space in ways that are

measurably different from traditional geometric objects.

The measurement of geometric objects is accomplished with

standard units of measurement. The area of a box is stated
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in square meters, the measurement of the volume of the box

is in cubic meters. But a fractal, having a complicated

surface, cannot be fully described by traditional

measurement methods. In fact, the measured length of a

fractal curve is dependent upon the measuring stick.

The usual explanation of this phenomena involves the

measurement of a coastline. In the box-counting dimension

method equal-sized boxes, or length units, are placed in the

area or along the line to be measured. Any unit of

measurement can be used but if a kilometer is used as the

measuring standard an answer can be calculated. If the

standard is decreased, a meter is the measuring standard and

the answer is different, larger, because a meter can

register the inlets and coves that a kilometer would

neglect. It is true again for a measuring standard of a

centimeter. More distance is covered by a smaller

measurement standard because smaller deviances in the

coastline are measurable. (Mandelbrot, 1983, p.27)

This concept can be extrapolated to higher dimensional

objects. A measuring standard could be cubic kilometers,

cubic meters, or cubic centimeters. These boxes fill the

space to be measured and are countable. Again the unit size

is arbitrary as long as the boxes are equal-sized.

The count of the necessary number of boxes is the number

N. The size of the box is r. As r decreases, N should
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increase for a fractal and should be approximated by

N = kr-D.

D is the dimension and k is a constant, unimportant for

determining the dimension. The fractal dimension used to

describe the texture or roughness of a fractal can be

compared to a Euclidean concept of dimension. (Canright)

Felix Hausdorff is cited by Mandelbrot as best

describing the fractal dimension. Hausdorff stated that it

is accepted that the length of the perimeter of an N-sided

polygon is N multiplied by the length of its side. Each

length is raised to its first power since that is the

dimension of a straight line in Euclidean geometry.

Similarly, the interior of the polygon can be approximated

by adding together the number of squares fitted within the

polygon times the width of each square, raised to the second

power, the dimension of a plane.

A fractal can be measured in units r. These units can

be raised to the Dth power. (Mandelbrot,1977,p.34) The

dimension D can be, but is not necessarily, an integer. The

non-integer dimension exists somewhere between the

dimensions that we can easily visualize. A dimension of 1.8

is more than a straight line but less than a flat plane.

The curve of dimension 1.8 fills more space than the curve

of dimension one but less than an area of dimension two.

The dimension, D, gives a quantitative measure of the

extent of the curve. This is difficult to visualize since
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traditional geometry still defines the curve with a fractal

dimension greater than one but less than two to have a

topological dimension of one, topological dimensions always

being integers. Many natural shapes can be well

characterized by fractals: metal grains, crystals, sand,

dust, cauliflowers, trees, and ferns. Geographical fractals

describe topographical objects such as lakes, islands and

coastlines, all of which can be simulated with fractals.

B. MODEL

The ocean bottom is typified by many sediments: sand,

mud, rock, coral, gravel, and combinations. These different

media have been studied as to acoustical penetration,

diameter of individual particles, and movement caused by

underwater wave action. Fractal processes are a good model

for natural phenomenon and, as a naturally occurring

phenomenon, the ocean bottom can be simulated by fractals.

The intent of the fractal simulation is to represent the

topography of the ocean bottom using a scaling factor to

indicate relative heights of areas on the ocean bottom.

1. Concept

The simulation of topographical features using

fractals has been used by Dietmar Saupe (Pietgen, Saupe,

1988, p2), Mandelbrot (Mandelbrot, 1983, Plate C9-C15), and

others. The concept is not new but its application to the

ocean bottom presumes that the floor of the ocean has

similar construction found on the topography above the ocean

5



surface. Different types of ocean sedimentation can be

simulated by altering the variables in the algorithm.

Smooth surfaces to excessively rough surfaces can be

simulated as well as varying elevations above the ocean

bottom.

2. Use

The intent of the model is to provide simulation of

portions of the ocean floor in studying navigation, image

processing, and sonar signal processing. The resulting data

will provide information that is otherwise inaccessible for

other sonar models. Simulations that attempt to model the

performance of a sonar need data that imitates the ocean

floor as background to provide a realistic setting. Real

ocean floor data is very expensive to obtain and requires

vast amounts of storage capacity. Where it does exist the

measurements do not extend to the resolution of interest.

Measurements are done on a gross scale. Those indicating

topology in small increments, even at one square meter are

not measured or recorded.

A reasonable simulation of the ocean bottom will

allow the validation of sonar models by comparison of actual

sonar data with output of the sonar model. Presently sonar

models use flat planes or simple geometric descriptions of

random number distributions to describe the ocean bottom.
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Targets of interest are overlaid onto the background. The

man-made target is the point of interest but interactions

between the target and a realistic environment are lost.

7



II. ALGORI TEN

The algorithm used to create the fractal bottom

simulation is a variation of the recursive subdivision

method. This method, also known as the random midpoint

displacement method, operates by creating midpoint values

using input from points surrounding the selected position

and random numbers used to influence the existing position

values. In order to demonstrate the influence of each

variable the values for all variables are held constant

except the variable being discussed. Additionally the seed

which generates the random number is held constant.

The fractal images generated differ only where they are

affected by the change in the variable being discussed. The

mean grey level of the fractal is influenced by the

predetermined corner values. The structure and large-scale

shape of the fractal is determined by the random number

seed. RN determines the distribution in the 256 level grey

scale of the pixel values. The texture is determined by the

alteration, its size and level placement.

Although these fractals can be said to be locally

nondeterministic, or at least unpredictable as to pixel

value and placement, these variables allow some element of

control as to fractal mean and roughness.
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Another tool used to control the fractal is the use of

clipping. After the algorithm is completed all values above

255 and below 0 are clipped. The result is comparable to

rocks surrounded by drifted sand, or mud, or flat level sea

mounts. The reason for this clipping is to force the pixel

values into the range 0 to 255 for display and one byte

storage. An alternative is to take the full range of values

and scale them into a 0 to 255 range. This method would

maintain the lowest and highest levels. Clipping can also

be employed at each level during the fractal creation. The

fractal would be controlled, never allowed to vary too far

outside the 0 to 255 range.

A. MATHEMATICAL DESCRIPTION

The algorithm developed for this work generates a

two-dimensional array of integers of values between 0 and

255. These can be interpreted as elevations, with the

lowest value corresponding to 0, and the highest value to

255. The algorithm starts with four corner values that have

been pre-assigned. These values fall between the range of 0

and 255. This range is used throughout this work for two

reasons. When displaying the resulting image most displays

use a 256 grey scale. This value also stores conveniently
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as a byte of data for each point of the image providing

efficient memory requirements.

A point midway between two corners, horizontally or

vertically, is computed using

midpointpixel - pixel 1 + pixel2 2RNalteraton.
2

RN is a random number between -1 and 1. The random number

is generated on the computer by its random number generator.

Although the computer actually generates a pseudorandom

number it is sufficiently random for the creation of the

fractal. The distribution of the random numbers generated,

whether uniform, Gaussian, or otherwise will be discussed

later.

The alteration, with the original corner values, varies

the fractal dimension. It is assigned before the pixel

values are computed. The influence of the alteration value

creates the texture or roughness of the fractal. This will

be elaborated on in the section describing variables.

After the first four midpoints have been computed a

square of eight points is constructed, Figure 1. The center

pixel value of the square is computed using

pixel = pixel I +pixel 2 +pixel 3+pixel 4 +RN alteration4

shown in Figure 2. An example of the procedure outlines the

computations on the first level of a 513 x 513 pixel

10



fractal. Pixels (1,1), (513,1), (1,513), and (513,513) have

been pre-assigned. These values are used to determine the

midpoint pixel values:

pxp (1, 25+7() = + RN . alteration
2

pxl(257,513) = 2 + RN alteration

pxl(513 ,S1) + pxl(513 ,513 ) + RN .alteration
pxl (27513,5) = 2

Spxl (513,257) =pxl(S13,1)+pxl(513,S13) + RN alteration2

px1 (257, 1) = pxl(2,)+pxl(S13,1) + RN alteration.
2

The center point is computed with

pxl(257,257) = pxl( ,257)+pxl(257,513)+pxl(513,257)+pxl(257,1) + RN . alteration

4

As an example, if the four initial corner values, (1,1),

(1,513), (513,1), and (513,513), are assigned to be 64, a

uniform distribution is utilized, and the alteration is set

at 25 the following values would be derived:

pxl(1,257) = 84 = + (0.8.25)
2

pxl(257,513)= 55= 2 +(-0.35.25)

pxl(513,257) =62 64+64+(-0.1 .25)
2

64+64
pxl(257, 1) = 82 = 2 + (0.7.25)

pxl(257,257) = 84 = 84+73+67 + 82+(0.3.25)

4
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The size of the fractal, in pixels , must be determined

prior to the computation. This algorithm creates square

images that require a limited number of levels to create 2

to the Nth power + 1 pixels per side. The number of levels

required for a specific size fractal is defined by, for

(N+I) levels, size =((2N+1)pixels).

In practice this means that fractals can be created of 3

x 3, 5 x 5, 9 x 9, 17 x 17, 33 x 33, etc. pixels. The

fractals created in this work were 513 x 513 because of the

display screen size of 512 x 512. The computer code for

this algorithm, in FORTRAN 77, has been included in

Appendix B.

B. VARIABLES

The algorithm is simple but differences can be produced

by altering the values of the variables: the starting

corner values, RN, and alteration. Variables other than

those specifically mentioned are held constant. For this

section the random number distribution is uniform, corner

values are 128, and the alteration is, from step one to step

nine, 64, 32, 16, 8, 4, 2, 1, 1, 1.

1. Corwner Values

The corner values influence the mean of the fractal

in terms of its grey level. Values can be assigned

separately for each corner pixel but all corner pixel values

must be between 0 and 255. Figures 3 and 4 show the effects

of a change in the corner value from 16, 32, 64, and 128 in
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Figure 3 to 64, 64, 64, and 64 in Figure 4. The seed for

both fractals is one. Figures 3a and 4a show the monochrome

image, Figures 3b and 4b show their wire mesh

representations.

The beginning corner values will influence the grey

levels in the fractal to remain at a corresponding level.

If the random number has an equal chance of being positive

or negative the value of each change, which is the

alteration multiplied by RN, has an equal chance of

increasing or decreasing the value of the computed pixel

from the average of the values from which it is derived.

This is the essential nature of a random walk. The

direction or distance taken does not rely on previous

movements.

Extremely low or high values will be artificially

controlled through clipping at 0 and 255. Eighteen fractals

were created with a constant seed of 50, uniform

distribution, and a constant alteration of 64. The corner

values were different for each fractal, 5, 50, 75, 100, 125,

150, 175, 200, 225, 250, but the values were the same for

all four corners of each fractal.

The means, Figure 5, and the standard deviations,

Figure 6, show the influence that the corner values have on

the mean value of the fractal. In Figure 5 the low and high

values show the effect of clipping the pixel values at 0 and

255 on the mean. The inability of pixel values to exceed

13



255 cause the mean to be less than would be expected with a

corresponding corner value. The same is true at the low end

of the grey scale with the mean being slightly higher than

the corner value. Figure 6, the standard deviations for

varying corner values, show the expected decrease at the

high and low ends again caused by clipping.

2. Random Number Generation

There are two aspects to RN, the random number: the

seed and the distribution. Each individual seed provides a

singular construct for the fractal. The distribution is the

type of frequency distribution of the random numbers

provided by the computer: binomial, Gaussian, or other.

The seed is the number given to the computer by the operator

to begin generation of random numbers. Use of the internal

clock of the computer as a seed generator allows

pseudorandom assignment of the seed value. All non-zero

integers can also be used as the seed.

The storage of the seed value allows the operator to

recreate the same fractal. This ability results in storage

savings for fractal images. A 512 x 512 image would

normally use 262,144 bytes of storage if each pixel is

represented by one byte. By storing the corner value, the

seed, and the alteration value the storage space decreases

to as little as three bytes along with the storage space for

the program. Regeneration time of the fractal is dependent

14



upon the computer. A VAX 11-780 can recreate a fractal in

approximately 45 seconds.

The random number generator influences the

distribution from -1 to 1 of the alteration. A constant

alteration would vary the product of the alteration with the

random variable from the negative to positive values

according to the distribution. The random numbers for these

fractals were provided by the International Mathematics

Subroutine Library (IMSL) utility installed on a VAX 11-780.

When a Gaussian distribution is used values of -1 to

1 are returned by the computer. It has a mean of zero with

an approximately bell-shaped curve. This would tend to

change the mean of two pixels very little for the value of

the midpoint pixel since the product of the alteration and

the random number concentrates around small values. Figure

7 shows the effect of a Gaussian distribution on the

fractal. The mean of the fractal is 18.4 and the standard

deviation is 29.1.

In the case of Figure 8 the binomial distribution

has a probability value of 0.8 calculated over 20 events for

values selected by the operator and coded into the software.

IMSL returns real numbers between 0 and 1. This is modified

by scaling the real numbers returned by the computer to a

range between -1 and 1. The mean of these returned values

is biased, not 0. The mean of the fractal created with a

15



binomial distribution is 42.7 with a standard deviation of

26.4. There is a negative bias to both the Gaussian and the

binomial images that have a dominant effect on those shapes.

A uniform distribution allows an equal chance at the

random walk anywhere between a negative product value and a

positive product value. IMSL returns a value between 0 and

1 which is scaled to -1 and 1. The standard deviation of

the returned values is 1/-[. The standard deviation of the

rescaled values is I/i'I.

Figure 9 has all the same input values as Figure 7

and 8 except for a uniform distribution. The uniform

distribution created a fractal, Figure 9 with a mean of 43.2

and a standard deviation of 20.6. The seed utilized in

Figures 7, 8, and 9 is 56.

3. Alteration

The variable with the closest relationship to the

overall appearance is the alteration. This variable affects

the texture of the fractal, giving, visually, the impression

of rolling, rough, or mountainous terrain. The fractals

created as examples in this section all use the same seed of

111. Fractals created with the same seed usually have some

feature in common that indicates their common source. There

are a variety of ways to implement the alteration in this

algorithm. The roughness of the fractal is dependent upon

the relation of the alteration size to the step in the

fractal creation process. In a 512 x 512 pixel fractal

16



there are ten stages. The first stage creates new pixels

that are 256 pixels removed, vertically and horizontally,

from the original corner pixels. As the algorithm moves

through the creation process, the physical distance between

newly created pixel values and source pixels becomes closer

and closer.

The mean of the source pixels is the basis for the

value of the new pixel. Added to that value is RN, with a

minimum of -1 and a maximum of 1, multiplied by the

alteration. If the alteration remains constant throughout

the algorithm and is a large number, compared to the range

of possible values for a pixel the final fractal will be

rough, as in Figure 10, where the alteration is 64.

This occurs because in the last few steps of the

fractal creation, the spacing between new pixels and the

creators is small, but the new pixel value, influenced by

the alteration, can make large values changes from adjacent

pixels. The fractal will be rough with a high frequency of

value changes between fractals. If the alteration is small,

the fractal will be smooth with smaller value changes

between pixels possible, Figure 11. The distribution used

here is uniform.

The alteration can also be changed at each step of

the process. Figure 12 shows the alteration increasing as

the distance between new pixels and creator pixels decrease.

A rough texture results because the jump in pixel value is

17



high where the physical distance between pixels is low.

Figure 13 shows the opposite case. The alteration decreases

as the distance increases. A smooth fractal image results.

Different alteration sets are applicable to

different bottom types. A set of alterations that decrease

and is clipped at 0, refer to Figure 7, is representative of

coral or rocks surrounded by mud or drifted sand. The same

alteration values, without clipping, would represent a

completely rocky region. However a different set of

alteration values is representative of a rough bottom

covered with gravel. Figure 10, with a constant alteration

value of 64, is an example of what could be a gravel bottom.

The fractals can be scaled to provide a rough texture with a

small range of values. A fractal can also represent an area

of one square foot or one square mile. Figure 9 as a

description of an area of one square foot is considerably

rougher than if it described a much larger area.

C. JUSTIFICATION MND VALIDATION

Validation of data simulated by a fractal algorithm

would involve three tests comparing real to simulated data.

Real data would be represented by digitized input from

texture images. Since the purpose was to simulate the ocean

bottom a selection of textures typical of the ocean bottom

was used. The grey level of each pixel would represent

height of the topographical features of the image.

18



First, since the data must appear visually like the data

it purports to simulate, subjects must compare simulated to

real data in a visual comparison. Second, a statistical

analysis must evaluate real and simulated data. Third, a

test will evaluate the fractal dimension of simulated data

and compare it to the fractal dimension of real data that

the algorithm has attempted to simulate.

1. Visual Inspection

The first test was carried out by showing two

subjects a series of images. They were asked to evaluate

which images were taken from digitized images of texture and

which had been simulated using the fractal algorithm. This

test evaluated texture, grey levels, and the size of the

features in the image. The subjects were not given

directions but were asked which images appeared to be

examples of topography and which appeared to be simulations.

The two judges presently work in the area of signal

and image processing. Their work involves sonar and laser

data. One evaluator is an electronic engineer specializing

in signal and image processing and the other is a

mathematician, specifically in the area of probability.

Both have been involved for several years with detection and

classification of objects in images.

The images of the real data are presented in Figures

14 - 17. Figure 14a and b are sand and the mesh

representation of sand. Figure 15a is an image of a rough
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wall, 15b is the mesh representation. Although it is highly

unlikely that a wall would be found on the ocean bottom the

texture is not unlike some corals, lava flows, and pitted

rock formations. The next image set, Figure 16, is also

sand but has a different texture from Figure 14. The last

image, Figure 17a and b, is gravel and its mesh

representation. The images are digitized from the

University of Southern California texture image set.

The simulated images are shown in Figures 18 - 21.

The mesh representations were viewed by the two judges and

all were deemed to be topographical. Figure 21b, which is

noticeably different from the other representations was

still felt to be topograpbiraliy representative. When asked

to compare images that were statistically similar there were

two sets accepted and two rejected. The agreement between

Figures 14 and 18 and Figures 16 and 20 were judged

acceptable. However Figures 15 and 19 and Figures 17 and

21, in both a) and b) of each figure, were not judged to be

similar in appearance.

2. Statistical Analysis

A statistical analysis was run on all images, real

and simulated, providing pixel grey level distribution,

mean, and standard deviation. It was expected that a

realistic (acceptable) simulation would have statistics

similar to the type of data that it what intending to

simulate. The mean and standard deviation was 155 and 32.06
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for Figure 14, 184 and 36.28 for Figure 15, 212 and 31.52

for Figure 16, and 199 and 35.72 for Figure 17.

The statistics of the simulated images was

controlled through the variables. The real images had means

of 155, 184, 212, and 199. The simulated images were

created with corner values of 155 for Figure 18, 185 for

Figure 19, 210 for Figure 20, and 200 for Figure 21. The

corner values resulted in means of 150, 171, 225, and 193.

The standard deviations for those images were 35.8, 36.0,

28.0, and 35.5.

Figure 18 had an alteration set of 5 to 45 in

increments of 5. This resulted in a rough texture similar

to the sand in Figure 14. The mean of Figure 14, at 155, is

close to Figure 18 at 150. The standard deviations of 32.06

and 35.8 are similar.

Figure 19 has a standard deviation of 36.0 compared

to 36.28 for Figure 15. The alteration set for Figure 19

was a constant value of 25. A constant value for the

alteration creates a standard deviation in the resulting

fractal close to the value of the alteration. The mean of

171 approximates that of Figure 15, 184, by use of the

corner value of 185.

The next set of images, Figures 16 and 20, have

similar means, 212 and 225, and standard deviations, 31.52

and 28.0. The alteration set used was 1, 1, 1, 2, 4, 8, 16,

32, 64. This alteration set produces a rough textured
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image. The image it is meant to simulate is the second

image of sand.

The last set of images, Figures 17 and 21, are

statistically similar with means of 199 and 193 and standard

deviations of 35.72 and 35.5. The alteration set was 64,

64, 64, 32, 16, 8, 4, 2, 1. This set produces a smoothly

textured image.

3. Fractal Dimension

Although several methods are applicable for

measuring fractal dimension the method used here is

described by Dubuc et al(Dubuc, et al. 1989, pp. 113-127).

The fractal dimension of a surface can be measured as a

non-integer between two and three. Dubuc et al. have

developed a method for estimating the fractal dimension of a

surface that is described as robust and can be used on

digitized data. This variation method is suitable because

the use of digitized data can be used as input without a

loss of accuracy that is found when using classical

algorithms. The Fortran code for this method to determine

the dimension of an image is presented in Appendix B. It is

known as the difference statistics algorithm where the

fractal dimension, D, is

D=im 3- 1ogA(Ak,A.)S-40(loge )

A is the mean pixel value at position x, y and is the

difference in value from the average and the actual value.

22



Figures 14 through 17 were all similar. The image

of sand, Figure 14, was 2.19 calculated over subsets of 64

by 64 pixels. Figure 15, the rough wall, under the same

circumstances had a dimension calculated of 2.15. Figures

16 and 17 correspondingly had dimensions of 2.21 and 2.16.

Although each image looks different in the a) portion of

each figure, one from the other, their appearance in the

mesh representations support the similarity of their

dimension values.
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III. CONCLUSION AND RECOMMENDATIONS

The results of the three tests were encouraging. The

statistical analysis of the real images versus the fractal

images showed the statistics of the fractal images could be

manipulated during their creation. The mean of an image can

be controlled through the choice of corner values. The

standard deviation of a fractal, for this algorithm, can be

controlled through the use of the alteration set. A

constant alteration will result in a standard deviation

close to the alteration value. An increasing alteration set

will result in a highly textured surface. A decreasing

alteration set will result in a smooth, convoluted surface.

The dimension determination showed consistent values for

the fractals used to simulate the images in Figures 14 - 17.

However the dimension of the fractal can also be controlled

to some extent through the choice of the alteration set and

the corner values. In creating the fractals, test cases

showed that a higher dimension could be obtained with a

corner value of 25 and a decreasing alteration set. The

fractal dimension that was created was adequate for the

purposes of this study.
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The visual inspection of the simulated images was the

least successful of the three tests. However a comparison

between an image and its mesh representation indicates that

the image itself is not the best means of comparison. The

human eye is incapable of distinguishing between 256 grey

levels and much information in the image is disregarded.

The mesh representation gives a better indication of height

and space. The nature of a fractal is such that it is size

invariant and although an image such as Figure 21 is not a

good representation of gravel at one measured size it may be

appropriate at another. For example if Figure 21b were

considered to represent a square meter of area it would not

appropriately represent gravel, but at an area of a square

decimeter it may be acceptable. The judges accepted all the

fractals to be representative of real data even if they were

not visually like the specific images that they intended to

represent.

As a recommendation, more work can be done in several

areas. First, the manipulation of the fractal dimension can

be studied further, perhaps with comparisons of different

methods of determining the dimension. Second, more

comparisons of different types of textures could be

performed. Third, natural features on the ocean floor, such

as sand ripples, could be added.

The algorithm as it now stands could be added to sonar

models to provide a better scenario for the modeling of

25



objects on the ocean floor. Run time is minimal and storage

space of variables for a specific fractal is as little as

three bytes. A limited number of bottom textures is

available through this research with the added enhancement

of size invariance which would allow multiple uses of a few

chosen fractals through size redefinition.
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APPENDIX A

*

Figure I

Figure 1. Step 1 in Fractal Creation
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Figure HI

Figure 2. Step 2 in Fractal Creation
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Figure 3A. Corner Values 16, 32, 64, 128
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Figure 3B. Mesh Representation - Corner

Values 16, 32, 64, 128
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Figure 4A. Corner Values 64, 64, 64, 64
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Figure 4B. Mesh Representation - Corner

Values 64, 64, 64, 64
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Figure 7A. Gaussian Distribution

35



Figure 7B. Mesh Representation - Gaussian Distribution
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Figure 8A. Binomial Distribution
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Figure 8B. Mesh Representation - Binomial Distribution
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Figure 9A. Uniform Distribution
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Figure 9B. Mesh Representation - Uniform Distribution
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Figure 10A. Alteration - Constant of 64
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Figure lOB. Mesh Representation - Constant of 64
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Figure 11A. Alteration - Constant of 5
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Figure lIB. Mesh Representation - Constant of 5
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Figure 12A. Alteration - Increasing
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Figure 12B. Mesh Representation - Increasing
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Figure 13A. Alteration - Decreasing
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Figure 13B. Mesh Representation - Decreasing

48



Figure 14A. Sand
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Figure 14B. Mesh Representation - Sand
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Figure 15A. Rough Wall

51



Figure 15B. Mesh Representation - Rough Wall
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Figure 16B. Mesh Representation - Wet Sand
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Figure 17B. Mesh Representation - Gravel
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Figure 18A. Fractal Simulation of Sand

57



Figure 18B. Mesh Representation - Fractal
Simulation of Sand
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Figure 19A. Fractal Simulation of Rough Wall
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Figure 19B. Mesh Representation - Fractal
Simulation of Rough Wall
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Figure 20A. Fractal Simulation of Wet Sand
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Figure 20B. Mesh Representation - Fractal
Simulation of Wet Sand
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Figure 21B. Mesh Representation - Fractal
Simulation of Gravel
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C Module Name: BFRACT.FOR
C Description: Backround simulation by fractal generation of topography
C Authors: C. Robertson
C Creation Date: 5 May 89
C Revision Date: 11 JUL 91
C
C.. .5.... 10 .. 15 .. 20.. 25 .30.. .35.. .40.. .45.. .5-50. 5 .5.. .60 .. 65.. . .75...
c

real z (1),rvar(9),tvar
character*50 finam
integer*4 im(513,513),ima,ar(ll)

c
c Create a fractal array to simulate the ocean bottom
c

write(6,*) ' What value is chosen for the outer corners?'
write(6,*) ' (1 through 255)' pick initial corner values
read(5,*) ima
write(6,*) ' What variation values do you want?'
write(6,*) ' Enter 9 values, singly.'
read(5,*) rvar(1) ' distance of 256
read(5,*) rvar(2) ! distance of 128
read(5,*) rvar(3) ! distance of 64
read(5,*) rvar(4) ! distance of 32
read(5,*) rvar(5) ' distance of 16
read(5,*) rvar(6) ! distance of 8
read(5,*) rvar(7) ! distance of 4
read(5,*) rvar(8) ! distance of 2
read(5,*) rvar(9) ! distance of 1
write(6,*) ' What do you want to name this file?'
read(5,44) finam ! name the output file

44 format(aS0) ! format for file name
c

N-9 # I of steps in a 512x512 image
c

ni-2** (N) +l ' defines size of fractal
C

do 200 i-1,N
ar(i)-2**(N-i) ' fill array of 2**N's

2 0 0  continue
c

im(l,l)-ima ! fill initial corner
im (1, ni) -ima ! values
im (ni, 1) -ima
im (ni, ni) -ima

c
c iseed-0 uses system clock iseed>0 provides a repeatable seed

call rnset (0) ! system clock used as seed
c
c LAYER nn
c

tvar-2. ! converts multiple to ±1
do 1 nn-1,N ! Loops through steps in fractal

iar-ar(nn)*2 ! step size
iiar-ar(nn)+l ! starting position
iiiar-ni-ar(nn) ' ending position
do 2 i-iiar,iiiar,iar ! y position
do 2 j-l,ni,iar x position

call rnun(l,z) ! call 1 random number
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im(j,i)=(im(j,i+ar(nn))+ixn(j,i-ar(nn)))/2.+
& ((z(1)-.5)*rvar(nn)*tvar) !calculate pixel value

2 continue loop
c

do 3 i=l,ni,iar !y position
do 3 j=iiar,iiiar,iar x position

call rnun(l,z) !call 1 random number
im(j,i)=(im(j+ar(nn),i)+im(j-ar(nn),i))/2.+

& ((z(l)-.5)*rvar(nn)*tvar) !calculate pixel value
3 continue !loop

c
do 4 i=iiar,iiiar,iar !y position
do 4 j=iiar,iiiar,iar x position

call rnun(l,z) !call 1 random number
im(j,i)=(im(j+ar(nn),i)+im(j-ar(nn),i)+im(j,i+ar(nn))

& +im(j,i-ar(nn)))/4A.((z(1)-.5)*rvar(nn)*tvar)
4 continue !calculate pixel value
1 continue !loop
c
c Transfer to array to pass back to main program
c

do 5 i-1,ni-1 !y position
do 5 j-1,ni-1 x position

if(im(j,i).gjt.255) im(j,i)=255 !clip at 255
if(im(j,i).lt.0) im(j,i)=0 clip at 0

5 continue !loop
c
c
c To test - write to a file for display
c

open(anit-l,file-finam, status-' new', !open fractal file
& recordtype-' fixed' ,recl=5 12)

c
do 101 i-1,512 pixels in row
write(1, 100) (im(j,,i),,j-1,,512) !write fractal to file

101 continue !loop
100 format (512a1) !format for fractal.
c

close (1) 'close fractal file
end
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CCCCCCCCCCCCCCCCCcCCCCCcCCcC CCCCCCCCCCCCCcCCCC CCcCCCCCcCCcccCCCCCCcccCC
C
C Name: DIM.FOR
C Purpose: To determine the fractal dimension of 512 x
C 512 images.
C Programmer: C. Robertson
C Date: 13 May 91
C
C.. ... .10 ... .020.. ... 30... .35 .. .40...345.... .50.. .55... 60.. 65.. .70... .75
C

real*8 sd
real*16 msq
integer odd(6),in(6),jn(6)
real a(6),la(6),eps(6),d(6),leps(6)
integer*2 image(512,512),im
real*16 m,holder
character*50 namin

C
data odd/64,256,1024,4096,16384,65536/
data in/64,32,16,8,4,2/
data jn/64,32,16,8,4,2/
data eps/64,32,16,8,4,2/

C
write(6,*) ' What is the name of input file?'
read(5,1) namin ' name file to be evaluated

1 format(a50) ! format of input file name
open (unit=l, file-namin, status-' old',readonly) ! open input file
read(1,2) image ! read input file

2 foraat(512al) ! format of input file
m-O ! clear mean
ms -0. ! clear mean sq
do 3 i-1,512 ! y position

(.c 4 j-1,512 x position
ix-iand(image(j,i),'00ff'x) ' clear upper byte
holder-im+holder ! accumulate pixel values
rcsq-float(im)*float(im)+msq ! accumulate square of pixel

4 continue ! loop
3 continue ! loop

C
C Fird mean and standard deviation
C

m-holder/(512.*512.) ' calculate mean
sd-sqrt(msq/(512.*512.)-m*m) ! calculate standard deviation

C
do 100 ia-1,6

n-in-0 !initialize data holder
C

u, 200 i- 1,512,in(ia) ! x position
do 300 j-1,512,jn(ia) ! y position

nn-0 'initialize data holder
do 400 ii-0,in(ia)-1 x position adjuster

do 500 jj-0,jn(ia)-i ' y position adjuster
if((ii.eq.0).and.(jj.eq.0)) go to 500 !unique condition
n-abs(image(i,j)-image(i+ii, j+jj)) !find pixel difference

C ! in two positions
nn-nn+n ! accumulate data

500 continue ! loop
400 continue ! loop

nnn-nnn+nn ! accumulate data
300 continue ! loop
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200 continue I loop
Ca(ia)-float(nnn)/(float(5l2*512)-.odd(i'a)) !find mean pixel value

if (aUa q!)te difference
if~a~a) .q.0)thenunique condition

la(ia)-.O001 avoid value of 0
goto 8 !go to epsilon calculator
else !other case
endif if completed
la(ia)-abs(loglO(a(ia))) !log of pixel value

8 leps(ia)-logl0(eps(ia)) !log of epsilon value
if(leps(ia) .eq.0) then unique case to avoid
d(ia) -l000000. dividing by 0
goto 100 !this section completed
else !other case
endif !if completed
d(ia)-3-(la(ia)/leps(ia)) fractal dimension

100 continue proceed
write(6,*) 'mean-',m,'1 standard deviation -',sd
write(6,*) I average epsilon logavg logeps
* dimension'
write(6,*) a(1),eps(l),la(l),leps(l),d(l) !print data to screen
write(6,*)I
write(6,*) a(2ý),eps(2),la(2),leps(2) ,d(2)
write(6,*) I
write(6,*) a(3),eps(3),la(3),leps(3),d(3)
write(6,*) I
wz-ite(6,*) a(4),eps(4),la(4),leps(4) ,d(4)
write(6,*) '
write(6,*) a(5),eps(5),la(5),leps(5),d(5)
write(6,*) '
write(6,*) a(6),eps(6),la(6),leps(6),d(6)
stop
end
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